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ABSTRACT
The radiation efficiency is defined in terms of the power that is radiated by a

structure, the absolute square of the normal velocity on the surface integrated over
that surface, and the characteristic impedance of the fluid facing the surface. The
utilization of the radiation efficiency as a useful engineering quantity for describing
the radiation from panel-like structures and for the estimation of the effectiveness of
measures that may be used to control the radiated power from such structures, is
questioned. Caution needs to be exercised in the use of the radiation efficiency for
these purposes.

ADMINISTRATIVE INFORMATION

This work was supported by the Propulsion and Auxiliary Systems Department, Code 27,

and the Ship Acoustic Department, Code 19, of the David Taylor Research Center.

INTRODUCTION

The radiation efficiency of a panel-like structure immersed in a fluid is a useful physical

quantity in estimating the radiative properties of such a structure. One would assume that the

radiation efficiency relates directly to the ability of the panel-like structure to radiate acoustical

power when excited by an external drive, i.e., the larger the radiation efficiency the more power

efficient the structural radiator. This paper questions such general attributes to the radiation

efficiency and examines others. The questioning is not made in order to challenge the use of the

radiation efficiency, but rather to prevent its misuse. Thus, a number of questions may be asked:

- Does the radiation efficiency relate to the ability of the structure to radiate (acoustical)

power?

* Is the radiation efficiency a useful engineering quantity?

* Can values of the radiation efficiency be beneficially tabulated for engineering purposes?

* Can similar structures be classified to possess equal radiation efficiencies either directly or

by extrapolations? How useful are radiation class averages?
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* Since radiation is a mechanism of damping in the structure, how are radiation and

mechanical damping related?

Today active and/or passive controls of radiation from panel-like structures are being

considered:

* What do these controls need to achieve?

" In particular, is the radiation efficiency a viable (relevant) quantity in such considerations?

To answer some of these questions, one may start with the definition of the radiation

efficiency.

RADIATION AND PARTIAL RADIATION EFFICIENCY OF A PANEL

The radiation efficiency o(co) is defined in terms of the power IIt (o) that is radiated by a

panel, the absolute square of the normal velocity Iv (X, co) 12 on the surface of the panel that is in

contact with the fluid occupying the semi-infinite space in front, and the characteristic impedance

(pc) of the fluid

1rad(W)= (PC) G(W0) d (0) 12 I= l=x,y} ; (1)xd

where X_ is the spatial variable in the plane of the panel and co is the frequency variable; see

Fig. 1 [1]. The partial radiation efficiency Oy(02) is similarly defined in terms of the partial power

Hyrad (2) that is radiated by a panel, the absolute square of the normal velocity IV (x, 2) 12 on the

surface of the panel, and (pc) of the fluid

rIyr(L2) = (pC) y(2) J dxIV(x, 02)12 ; 2= {ky, col (2)

where the wavenumber variable ky is the Fourier conjugate of the spatial variable y, and V(x, M)

is the Fourier transform of v (x, co) with respect to y [ 1]. The integration of the absolute square of

the normal velocity in Equation (2) is only partially carried out as compared with Equation (1)

where the integration is full. Computations with respect to cy(2) [Equation (2)] are obviously

easier to perform than those with respect to u(co) [Equation (1)]. Yet, the physical interpretations
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often remain phenomenologically similar. This similarity, if exercised with caution, allows one to

use the partial quantities and be availed of the simplicity that is afforded therein. The identities

1d1v( 1'a )I2 = Jdky [JdkI V(k, L.2)(2 ] -- od l d~IV[nsin(0), iccos(0), co]

TotJIdgV(,)) 12 ; Toty =dkIV(k, 2 )12 ; { S, 0} = {k, (2} , (3)

are noted, where VOL, co) is the Fourier transform of v (X, co) with respect to A and h is the Fourier

conjugate of A. At times, as a matter of abbreviation when the dependent variables are obvious

they may be suppressed; e.g., Tot () = Tot and Toty (L2) = Toty. The radiated and partial

radiated power may be defined alternately to Equations (1) and (2) in the forms

-1/2 O))12
fl(O) = (PC) J( i)cdic 60d [1 - (Wc~o)2]"j V(csino, Jccoso, )2

(pc) Supersonic portion of Id1&I V(G, 0)12 = (pc) Sup (4)

fyd(02) = (pc/Y) JyoY dk [I - (kc/YO))2]'i/ 2 VO, 0'2)12

S(pc) Supersonic portion of jdk V(k, W2)I2 = (pc)Supy (5)

respectively, where c is the speed of sound in the fluid [1]. Thus, from Equations (1), (2), (4),

and (5) one may generically state

a(0) = Sup/Tot ; Tot = Sup + Sub

Sub = Subsonic portion of JdkJ V(U, C))1 2  (6)

ay(2) Supy/Toty ; Toty = Supy + Suby

Suby = Subsonic portion ofIdk I V(k, 02)(2
' (7)

It is apparent from Equations (6) and (7) that the radiation efficiency o is substantially the ratio of

the supersonic portion to the total integral of the absolute square of the normal velocity, and that the

partial radiation efficiency cry is substantially the partial supersonic portion to the partial total
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integral of the absolute square of the normal velocity on the radiating surface. The singular factors

in the integrands of ind and Fnr4dy do not play a decisive role in the determination of these

quantities. Clearly the total integrated and the partial total integrated absolute square of the normal

velocity on the radiating surface are composed of a supersonic portion and a subsonic portion each,

as is stated in Equations (6) and (7), respectively. [Moreover, the analogy between a and a is

apparent in Equations (1), (2), (3), and (4).] To aswer some of the questions posed in the

preceding section, these ratios need to be examined. The first step is to investigate the manner in

which the normal velocity V(k, co) [= (V(k, 02)] is established on the radiating surface of the

structure. If the normal velocity, or even the absolute square of that normal velocity, on the

radiating surface of a structure can be readily ascertained, there is no difficulty in ascertaining both

the radiated power and the radiation efficiency. Indeed, in this case, the radiation efficiency is

superfluous since the ultimate goal of defining the radiation efficiency is to derive the radiated

power. However, an intimate knowledge of the absolute square of the normal velocity on a

radiating surface is rarely available. What may be available is the total or even the partial total

integration of the absolute square of the normal velocity over the radiating surface; namely, Tot and

Toty. These quantities may be easily determined by a simple set of measurements and/or analytical

procedures. The determination of Sup and Supy is another matter, and yet they are the significant

quantities for the determination of the radiation and partial radiation as well as the respected

radiation efficiencies. In the next section an attempt is made to explore the ways and means for

ascertaining Sup and Supy. For this purpose a specific, and yet generic, example is presented. In

this example an unribbed and a regularly ribbed panel, subjected to line drives, model the panel-

like structures and the external driving systems, and the partial quantities are featured in the

illustrations.
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NORMAL VELOCITY ON THE RADIATING SURFACE OF A STRUCTURE

The normal (spectral) velocity V(j., co) [= (V(k, Q)] on the surface of a structure that is in

contact with a fluid can be expressed formally in terms of the impulse response function 9(k-, cI)

[or equivalently I k, 01)] and the external drive pe', co) [or equivalently Pe(_', co)] in the form

v( , wo) = JaiA' co) dAp(AC)) _= GQ k' co) dPe ', co(8
(8)

where the spatial variable Z' is inclusive of i, X is the Fourier conjugate of, k" is the Fourier

conjugate of 2', and the impulse response function is assumed pure in the sense that it is dependent

only on quantities and parameters that describe the structure; it is independent of Va, co) [or

equivalently v(L, o))] and of pc(XA', co) [or equivalently Pe(a', co)]. Broadly, and at this stage in

passing, passive controls modify the impulse response function, and active controls modify the

external drive.1 Note that these controls are placed with respect to x' [or k'] and are not limited to

span merely A [or kM, except when the spans of these variables happen to coincide. If driving

machinery and machinery foundations are sitting atop the panel, the span of A' and the span of x do

not coincide; the span of A_' exceeds that of A by the spatial extent of the machinery foundations.

However, in the examples cited in the paper, the coincidence of the spans of 2' and 2 is assumed

apriori. Typical distributions of the absolute square of the normal velocity on a panel, in response

to a line drive, are shown in Figs. 2 and 3. The line drive is chosen with (bky) = 0, where b is a

typical separation between adjacent ribs when ribs are attached to the panel; otherwise it is a

convenient spatial scale [1]. Figure 2 depicts the flexural velocity for a frequency that lies above

the critical frequency c, or the longitudinal velocity at any frequency with (ce/c) > 1, where ce is

the speed of the longitudinal free waves. The critical frequency wc is defined with respect to the

speed of sound c in the fluid. The specific values chosen for Fig. 2 are: (W/ok) = 2 or (ce/c) = 2.

1Equation (8) makes clear that, whole or in part, modification in the impulse response function

may, at times, be conveniently accounted for by modfications in the drive and vice versa.
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Other parameters which were chosen as standard for all the figures are: the panel is a plate,

(oe/c) b = 16, (M/mb) = 0.3, and 11p = 2.5 x 10-3, where m is the mass per unit area of the panel,

M is the mass per unit length of the rib, and Tp is the mechanical loss factor in the panel. In Fig. 3

the flexural velocity is depicted for a frequency co that lies below the critical frequency; e.g.,

(o/ok) = 0.2. It is observed that when the panel is ribbed, multiple resonance peaks (and anti-

resonance valleys) occur, in the normal velocity, in addition to the two major peaks and two deep

valleys. The two major peaks are resonance peaks that occur at the wavenumbers that are equal to

the positive and negative value of the free wavenumber kp, kP = (oxC/C2), and the two valleys

appear at the wavenumbers that are equal to the positive and negative value of the sonic

wavenumber (to/c). These valleys are nonresonance and they occur in consequence of the

extremely high (infinite) fluid loading at the sonic wavenumber. The additional resonance peaks

and valleys are, of course, absent in the unribbed panel; the two major resonance peaks and the

two deep valleys remain substantially intact; see Figs. 2 and 3. Usually the flexural, the

longitudinal, and other types of responses contribute simultaneously to the normal velocity on the

panel. For the sake of simplicity and brevity, subsequent consideration focuses merely on the

flexural response. [Conceptually, based on this limited consideration, one may readily extend the

arguments to encompass all those other types of responses.]

Figure 2 shows that above the critical frequency, the contribution to the integral of the absolute

square of the normal velocity over the relevant spectral range is dominated by the supersonic

components

Tot= Sup ; Toty = Supy ; (o/o\) > 1 (9)

From Equations (6) through (9) one obtains

a= I ; CY - 1 (cdc) > 1 (10)

It is thus realized that for the flexural response above the critical frequency, the radiation efficiency

is a straightforward quantity on several accounts: because of its unit identity and, importantly, and
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as already implied, because Tot and even Toty are relatively easy to determine by a simple set of

measurements and/or analytical procedures. [cf. Equation (8).] Equations (1) through (10) make

it clear that above the critical frequency, direct relationships exist between the radiated powers fl'

and rIyra and the respective values of Tot and Toty. The unity for the radiation efficiencies, as

stated in Equation (10), ensures the existence of those relationships.

On the other hand, it is observed in Fig. 3 that below the critical frequency the contribution to

the total and partial total integral of the absolute square of the normal velocity is not dominated by

the supersonic components. In fact, the contribution to the integral of the absolute square of the

normal velocity is dominated largely by the subsonic components; i.e., below the critical frequency

Sup Z (1/2)Tot ; Supy Z (1/2)Toty ; (o/woc) <I

From Equations (6), (7), and (11) one obtains

c r :S ( 1 /2 ) ; cy :s ( 1 /2 ) ( (o/ ) < 1 ( 2

As already twice implied, determining Tot or even Toty is a relatively simple task. However,

extracting the values of Sup and Supy, is usually not an easy task, especially when the panel

possesses localized surface impedance nonuniformities, such as ribs, that cause resonances. While

the details of the peaks in the supersonic range may not be significant here, they play a significant

role in contributing to the integrals that determine Sup and Supy. To measure Sup or Supy in the

presence of the much larger Tot or Toty, respectively, is a mean task to perform. When Sup and

Supy assume the role of the signals, Sub and Suby assume the role of the noises, respectively.

Below the critical frequency, the latter quantities dominate the former. Moreover, Sup and Supy

are dominated, by definition, by components that are spatially large scale with respect to the sonic

wavenumber; i.e., components that lie in the low wavenumber range, below the sonic

wavenumber. These components are thus intrinsically more difficult to measure than those

spatially small scale components that are contributing to Sub and Suby. To compound the

difficulty, the distribution and nature of the additional resonance peaks (and valleys) in the
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response of the panel, are closely linked to the distribution and nature of the structural components

and their couplings and the external drive systems that excite them; e.g., the ribs and their

interactions via the panel, the positioning of the external line drive, etc. Worse, the disposition of

these additional resonance peaks and (anti-resonance) valleys may be sensitive even to minor

changes in the features of a "structural-drive" system. For example, a component in the structure

that is defined by the spatial parameter L and the loss factor 7ip, undergoes a minor change if L

varies by AL and ri by A 1l so that (kpAL) << 1 , and (LkpA~ip) << 1, where k, is the free

wavenumber associated with this component. Variations of this kind in the parameters that

describe the structure and the external drive system may strongly influence the disposition of the

additional resonance peaks and valleys if they are present This strong influence is depicted in

Figs. 4 and 5. The standard response; e.g., Fig. 3, is compared with responses in which changes

in the standard values of parameters are introduced. In Fig. 4 the separation between adjacent ribs

is changed, and in Fig. 5 the position of the application of the line drive is changed. It is observed

that even in this simple and regularly constructed structure, the influence of minor changes in the

separation between adjacent ribs and the positioning of the external drive may be quite strong. As

already indicated, below the critical frequency the resonance peaks in the supersonic range

dominate the contribution to Sup and Supy. To summarize the complexity that exists below the

critical frequency: the supersonic components are spatially large and not easily deciphered in the

presence of the more numerous spatially smaller subsonic components; yet, the peaks in the

supersonic components may be sensitive to minor structural details. In the absence of

nonuniformities, the situation is much less complicated; there are no additional peaks to be

concerned with, and the supersonic range is more robust to changes in the structure; e.g., increase

in the mechanical damping hardly changes the response in the supersonic range of a uniform panel

responding below the critical frequency. This statement is illustrated and supported in Fig. 6. In
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contrast, the mechanical damping has a pronounced effect on the resonance peaks (and valleys),

even those that lie in the supersonic range of spectral space.2 This statement is illustrated and

supported in Figs. 7 and 8. The difference between Fig. 7 and Fig. 8 is in the positioning of the

external drive [cf. Fig. 5.].

RADIATION EFFICIENCY BELOW THE CRITICAL FREQUENCY

Above the critical frequency, the radiation efficiency is substantially equal to unity and unity

requires no special consideration; see Figs. 9 and 10. At and in the vicinity of the critical

frequency, the nature of the radiation efficiency and the nature of the radiated power require special

treatment; however, this treatment lies outside the scope of this paper [1].

It is apparent that below the critical frequency the radiation efficiency is below unity; see

Figs. 9 and 10. As argued, the radiation efficiency is less than unity because Tot and Toty on the

radiating surface are not dominated by the supersonic components. To ascertain the radiated power

and/or the radiation efficiency, the portion that is contributed by the supersonic components to

these integrals needs to be estimated. Figure 9 depicts such an evaluation for an unribbed uniform

panel. The evaluation is stated in terms of the partial radiation efficiency. Does the (partial)

radiation efficiency relate to the ability of the structure to radiate (acoustical) power? It was stated

earlier that Sup and Supy are substantially unaffected by mechanical damping; see Fig. 6. It is

concluded that the radiated and partial radiated power are similarly unaffected by this damping.

However, the radiation and partial radiation efficiency are strongly affected; a and cyy increase with

20ne is aware that components, in the response, that lie in the supersonic range are damped by

radiation, in addition to the mechanical damping. Therefore, when mechanical damping is

increased, it is destined to be relatively more effective on components that reside in the subsonic

range than on those residing in the supersonic range. However, one should also be aware that

resonances usually take place for reasons that transcend the mere damping of individual constituent

spectral components; spectral components will adjust their positions of residence, and even their

affiliation if necessary, to accommodate the response of the structure as a whole.

9



increase in mechanical damping. This increase in cy is illustrated in Fig. 9. Does the increase in

the radiation efficiency or the partial radiation efficiency imply that the structure radiates more

power? In this case, no; it merely implies that the flexural Sub and Suby are decreased by

mechanical damping; e.g., see Fig. 6. Thus, as this example amply demonstrates, the radiation

efficiency alone is not sufficient to specify the radiative properties of a panel-like structure below

the critical frequency. It emerges that, in this simple case of a uniform panel, two panels that are

identical except for a difference in the applied mechanical damping, yield different radiation

efficiencies. The panel with less mechanical damping yields the lower radiation efficiency. Yet, to

a given drive, the radiated powers by these two structures are substantially the same. The example

indicates that "apparently similar structures cannot be classified to possess equal radiation

efficiencies."

Figure 10 depicts phenomenologically a more realistic situation. First, the partial radiation

efficiency below the critical frequency is not smooth with frequency, as in Fig. 9. The uneven

values of the partial radiation efficiency, as a function of frequency, have to do with the periodicity

of the attached ribs [1]. [The excursions in the unevenness are expected to be less pronounced

when the periodicity is disturbed.] As displayed in Figs. 2 and 3, the ribs (the nonuniformities in

the surface impedance of the uniform panel) induce additional resonance peaks (and valleys) in the

absolute square of the normal velocity on the radiating surface. The additional resonance peaks

below the critical frequency, especially those residing in the supersonic range, contribute

dominantly to the radiated power from the panel. The contributions to the radiated power tend to

be large from those supersonic regions that are occupied by these additional resonance peaks. The

presence of these peaks, their locations, and their sizes change with frequency. It was argued

earlier that further to the sensitivity of these peaks to changes in frequency, these peaks are also

sensitive to changes in the parameters that define the radiating structure and the external drive

system. The sensitivity involves even minor changes in this parametric definition. Therefore, the

radiated power is likewise sensitive to these changes in the frequency and to minor changes in the

parameters that define the structure-drive system. On the other hand, flexural Tot and Toty are
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governed largely by the two major peaks which are not so sensitive to these changes. It is thus

concluded that the radiation and partial radiation efficiency, below the critical frequency, would

exhibit the kind of peaks and valleys displayed generically in Fig. 10. The peaks and valleys in

Fig. 10 can be directly related to the changes in the resonance peaks and valleys that occur in the

absolute square of the flexural velocity with changes in frequency [1]. In particular, it is argued

that these kind of peaks and valleys would also be sensitive to even minor changes in the

mechanical-drive system of a (complex) radiating structure. [cf. Figs. 3 through 5, 7, 8, and 10.]

It follows that, below the critical frequency, the (partial) radiation efficiencies of two nominally

identical structures may, in details, be very different due to these sensitivities; e.g., again, see

Figs. 3 through 5, 7, 8, and 10. Some of these sensitivities may be dulled by averaging over

frequency bands and/or ensemble of nominally identical structures. This kind of averaging may be

used to derive a "radiation class average." Although useful, these types of procedures occasionally

and unexpectedly cause poor estimates, whether or not these estimates are backed by

mf isurements and/or by analytical procedures. Finally, one may investigate the influence of

mechanical damping on the radiated power and the radiation efficiency of a ribbed panel. The

resonance peaks (and anti-resonance valleys) are, by nature, sensitive to damping. Therefore, if

the radiated power is contributed largely by resonance peaks, an increase in mechanical damping

would usually yield a decrease in the radiated power. Below the critical frequency there always

exists at least two resonance peaks in the subsonic range. An increase in mechanical damping

would cause the usual decrease in density of subsonic components residing in those spectral

regions that were occupied by resonance peaks when damping was lower; e.g., see Figs. 7 and 8.2

The decrease in the density of components that lie within the major peaks will be dominant.

Therefore, one would expect that below the critical frequency an increase in the radiation efficiency

will usually result from increase in the mechanical damping; e.g., see Fig. 10. However, like the

differences between the radiation efficiencies of an unribbed and a ribbed panel, the increase in the

radiation efficiency with increase in mechanical damping would be more erratic and uneven in the

latter case. In spite of this, an increase in the mechanical damping tends to smooth out the
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unevenness in the radiation efficiency of a ribbed panel; e.g., see Fig. 10. Again, the cavalier use

of the radiation efficiency as a quantity relevant to the radiative properties of a radiating structure is

flagged.

The application of mechanical damping to a radiating structure is, in a way, already the

employment of a passive device designed to control the radiated power by the structure. The

understanding and caution that are required in assessing and estimating the usefulness of even this

common passive device, in terms of the radiation efficiency, is hopefully clear. When one turns to

the introduction (application) of other, less common, and/or more sophisticated devices that are

designed to control the radiated power from panel-like structures, the use of the radiation efficiency

demands even more understanding and caution. Only a synopsis of that demand is treated in the

next section.

CONTROL OF THE RADIATED POWER VERSUS

THAT OF THE RADIATION EFFICIENCY

Equation (8) is recalled. To control (reduce) the radiation (to the far field) one needs modify

the impulse response function I L', co) [-- G (a I ]', co)] and/or the external drive

P.x', c0) [- Pe (k', Co)] in such a manner that Sup (or Supy) on the radiating surface is definitively

controlled (reduced).' As Equations (4) and (5) indicate, the relationship between the control

(reduction) of the power and the control (reduction) of the supersonic portion of the absolute

square of the normal velocity is direct. On the other hand, any change (e.g., a reduction in the

subsonic portion of the absolute square of the normal velocity) has no influence on the radiated

power. Equations (6) and (7) show that a direct relationship does not necessarily exist between the

control (reduction) of the radiated power and the possible changes in the radiation efficiency due to

the change in Sup (or Supy) induced by the various control measures. The absence of a direct

relationship of this kind prompted the questioning posed in the introduction to this paper. In this

connection, it should be pointed out that if the generation of the normal velocity on the radiating

surface of the structure could be selected (fixed) directly, not via Equation (8), then the radiation
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efficiency could also be manipulated directly and the questioning would become superfluous.

Often, however, this is not the case. The control that one can usually exercise is limited to the

manipulations of the impulse response function 1[or equivalently G) and/or P, [or equivalently PJ

and not of Vs, co).

It was established in the preceding section that a control device that reduces the supersonic

portion of the absolute square of the normal velocity on the radiating surface results in a

substantially corresponding reduction in the radiated power to the far field. It is noted, however,

that the radiation efficiency, in consequence of implementing this radiation control device, may

either decrease, remain unchanged, or increase, depending on the accompanied change in the

subsonic portion of the absolute square of the normal velocity on the radiating surface. Again, this

accompanied change, it is noted, has no influence on the radiated power. Therefore, the radiation

efficiency alone may not be a reasonable quantity with which to assess the success or failure of an

active and/or a passive control of the radiated power. In conjunction with other indicators, the

radiation efficiency may be of some use [2]. For example, if the radiated power is reduced and the

radiation efficiency is increased, one may conclude that the subsonic portion of the integral of the

absolute square of the normal velocity, i.e., Sub, is decreased, by the control device,

proportionately more than Sup. In certain situations such information may be useful [2].
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Ribs

Fig. I. A ribbed panel and the coordinate system.
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Regularly Ribbed
-1 ,,, 1 , -1---. Unribbed

Fig. 2. The 10 log of the absolute square of the normal velocity on a fluid loaded plate
as a function of the normalized wavenumber. The velocity is generated by a line
drive applied at x. = 0.3b, where b is the separation between adjacent ribs.
Depicted is either the flexural response above the critical frequency co,
(oko,) = 2.0 (the critical frequency is with respect to the loading fluid of
density p and speed of sound c) or a longitudinal response that is governed by a
free wave speed ce such that (c/ce) - 2.0. Other standard parameters are (copc)b = 16
Tip =2.5 x 10- and (bky) =0.

2 (kco) -a

Regularly Ribbed

Unribbed

Fig. 3. The same as Figure 2 except that the response is for a flexural wave below
the critical frequency, (Woq) - 0. 2.
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(~~/cb = {13.5 -

Fig. 4. The same as Figure 3 except that the parameteer ((c)b is changed as indicated.

2(kc/co) 
-

Xa 0.3

Fig. 5. The samne as Figure 3 except that the location of the drive is changed as indicated.
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2 (kcko)

TP2.5 x 10-3

flp- 2.5 x 10 2

Fig. 6. The same as Figure 3 for the unribbed plate except that the loss factor is varied as
indicated.

A, 
'

- : (kc/(o)

2.5 x 10
3

1P2 .5 x 10-2  .. .

Fig. 7. The same as Figure 3 for the ribbed plate except that the loss factor is varied.
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23

11P 2.5 x1023

Fig. 8. The samne as Figure 7 except that the plate is driven at x. 0. O5b rather than the standard x.a 0.3b
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10

10

10

1023

-, 0.0025
10 -4 p 0.025

10.4 __ __ __ __.___. _ __ _. _

0.0 0.5 1.0 1.5 2.0

Fig. 9. The partial radiation effeciency ay(W2), m2 = {ko)), of a fluid loaded unribbed plate
excited by a line drive applied at x= 0.3b and with (bky) = 0. [cf. Figures 1 through 3.]

10 1

10

10
0

10 
.3

10 0.'0 - - -0. *5 1.'0 1. .5 - - -2.0

(o /o )

Fig. 10. The same as Figure 9 exept that the plate is regularly ribbed.
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